2020高中三角函數(shù)公式大全表格word版擁有著最全面的高中三角函數(shù)公式教學(xué),用戶可以來旋風(fēng)軟件園下載該文檔,無論是在電腦上打開來學(xué)習(xí)記憶還是打印成紙質(zhì)表格都非常方便。三角函數(shù)是高中數(shù)學(xué)極其重要的一部分,相信該表格會輔助大家在高中三角函數(shù)學(xué)習(xí)上有所突破的。還等什么呢,快來旋風(fēng)軟件園下載體驗吧~
三角函數(shù)是基本初等函數(shù)之一,是以角度(數(shù)學(xué)上最常用弧度制,下同)為自變量,角度對應(yīng)任意角終邊與單位圓交點坐標或其比值為因變量的函數(shù)。也可以等價地用與單位圓有關(guān)的各種線段的長度來定義。三角函數(shù)在研究三角形和圓等幾何形狀的性質(zhì)時有重要作用,也是研究周期性現(xiàn)象的基礎(chǔ)數(shù)學(xué)工具。在數(shù)學(xué)分析中,三角函數(shù)也被定義為無窮級數(shù)或特定微分方程的解,允許它們的取值擴展到任意實數(shù)值,甚至是復(fù)數(shù)值。
三角函數(shù)一般用于計算三角形中未知長度的邊和未知的角度,在導(dǎo)航、工程學(xué)以及物理學(xué)方面都有廣泛的用途。另外,以三角函數(shù)為模版,可以定義一類相似的函數(shù),叫做雙曲函數(shù)。常見的雙曲函數(shù)也被稱為雙曲正弦函數(shù)、雙曲余弦函數(shù)等等。三角函數(shù)(也叫做圓函數(shù))是角的函數(shù);它們在研究三角形和建模周期現(xiàn)象和許多其他應(yīng)用中是很重要的。三角函數(shù)通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。更現(xiàn)代的定義把它們表達為無窮級數(shù)或特定微分方程的解,允許它們擴展到任意正數(shù)和負數(shù)值,甚至是復(fù)數(shù)值。
正弦函數(shù):sin 對邊比斜邊
余弦函數(shù):cos 鄰邊比斜邊
正切函數(shù):tan 對邊比鄰邊
余切函數(shù):cot 鄰邊比對邊
正割函數(shù):sec 斜邊比鄰邊
余割函數(shù):csc 斜邊比對邊
定名法則
90°的奇數(shù)倍+α的三角函數(shù),其絕對值與α三角函數(shù)的絕對值互為余函數(shù)。90°的偶數(shù)倍+α的三角函數(shù)與α的三角函數(shù)絕對值相同。也就是“奇余偶同,奇變偶不變”。
定號法則
將α看做銳角(注意是“看做”),按所得的角的象限,取三角函數(shù)的符號。也就是“象限定號,符號看象限”(或為“奇變偶不變,符號看象限”)。
在Kπ/2中如果K為偶數(shù)時函數(shù)名不變,若為奇數(shù)時函數(shù)名變?yōu)橄喾吹暮瘮?shù)名。正負號看原函數(shù)中α所在象限的正負號。關(guān)于正負號有個口訣;一全正,二正弦,三兩切,四余弦,即第一象限全部為正,第二象限角,正弦為正,第三象限,正切和余切為正,第四象限,余弦為正?;蚝唽憺椤癆STC”,即“all”“sin”“tan+cot”“cos”依次為正。還可簡記為:sin上cos右tan/cot對角,即sin的正值都在x軸上方,cos的正值都在y軸右方,tan/cot 的正值斜著。
比如:90°+α。定名:90°是90°的奇數(shù)倍,所以應(yīng)取余函數(shù);定號:將α看做銳角,那么90°+α是第二象限角,第二象限角的正弦為正,余弦為負。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 這個非常神奇,屢試不爽~
還有一個口訣“縱變橫不變,符號看象限”,例如:sin(90°+α),90°的終邊在縱軸上,所以函數(shù)名變?yōu)橄喾吹暮瘮?shù)名,即cos,所以sin(90°+α)=cosα。
三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數(shù)字一,連結(jié)頂點三角形。向下三角平方和,倒數(shù)關(guān)系是對角,
頂點任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負化正后大化小,
變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。
逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
大?。?08.55M / 版本:word免費版
大小:250.00M / 版本:word免費版
大?。?96.00M / 版本:word免費版
大?。?3.76M / 版本:word免費版
大?。?4.51M / 版本:word免費版
大小:29.93M / 版本:word免費版
大?。?8.16M / 版本:word免費版
大?。?00.16M / 版本:word免費版
大?。?96.73M / 版本:word免費版
大小:21.08M / 版本:word免費版
大?。?3.74M / 版本:word免費版
大?。?0.12M / 版本:word免費版